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This research presents a mathematical model that uses artificial neural networks for the assessment of
the wave energy potential of sites, based on data recorded by wave monitoring instrumentation. The
model was implemented and validated in two different sites. The first one had a dataset from an upward-
looking acoustic Doppler current profiler that recorded a hindcast during 2! years. The second consisted
in data from a buoy using motion sensors that recorded continuously during 23 years. For this second
site, the performance of the neural network model was compared to that of the Nearshore Wave Pre-
diction System (NWPS), which combines SWAN, Wavewatch III and other numerical models. For the 2%
years' hindcast, the error of the neural network was significant which suggests a better use for filling
missing gaps within datasets than for resource assessment. Meanwhile the performance of the neural
network trained with the 23 years' hindcast was satisfactory; better than the NWPS in terms of relative
bias but worse in terms of scatter index. Therefore it is concluded that neural networks can make an
optimal use of the data produced by wave monitoring instrumentation and are useful to characterize the

wave energy resource of a coastal site.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Justification and objectives

Waves are a promising energy resource, although intermittent
and unpredictable. The use of this renewable source has two front
lines. The first one is the development of more efficient and
economical electromechanical conversion devices. The other one is
the development of methods to assess precisely the energy po-
tential of sites in which wave power plants could be located. At
present, wave energy is only economically viable if subsidized, due
to its higher levelised costs when compared to other energy sources
[1]. In parallel with development of wave converter prototypes,
deployment strategies that aim to reduce costs include the instal-
lation of wave energy devices in existing marine structures, such as
breakwaters, and the combination of offshore wind and wave en-
ergy arrays.
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Certainly, waves are a renewable energy source that raises an
increasing interest. Year after year new researches are published
regarding local wave potential assessments around the world;
some recent examples can be found in Refs. [2-6]. Most of this
research is based on the application of third-generation wind-wave
models, sometimes improved with different mathematical models
that consider complementary aspects such as, for instance, the
directional spectra transformation from open ocean to the near-
shore. Third-generation wind-wave models provide wave spectra
and wave field information over large selected sea areas. The
models are particularized to a geographical area by considering its
bathymetry and local currents. Then the wave forecasting model
makes predictions with some days in advance based on wind speed
at sea. If a record of average wind speed data is used as input, the
model can generate a hindcast from which the local wave energy
potential can be inferred. These available computational models are
primarily intended for climate monitoring and navigation, but have
interesting applications for the assessment of wave energy
potential.

Some wind-wave models are able to accurately reproduce the
wave climate and, therefore, the energy available, in very shallow
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waters. The model can be further tuned by using data assimilation,
a process in which real wave measurements are incorporated into
the model state of the numerical model. This results in very accu-
rate models that go beyond preliminary evaluations of energy
resource. Through the use of these numerical models, large areas
can be assessed and the sites with the greatest potential can be
revealed.

A different approach is considered in this work, as our proposal
refers to the use of wave data measured in a particular site, fol-
lowed by further statistical processing of those data. The aim is to
perform a detailed evaluation of the energy that a site would pro-
duce and therefore an analysis of the profitability of a wave energy
plant located in that site.

Our proposal intends a methodology that is simpler than con-
ventional numerical models and shows two advantages over them:
(I) requires much less computing power; and (II) is capable of using
incomplete hindcasts, estimating the values of the gaps between
measurements with an acceptable error. Regarding this second
issue, it must be mentioned that simulations using numerical
modeled data have been used for energy predictions, however they
cannot substitute numerical modeling techniques, particularly if
there is not enough buoy or recording data [7-10]. International
protocols and resource assessment methods require at least 10
years of dataset, in order to ensure that the seasonal, intra-annual
and decadal variations are resolved [11-13]. The proposed method
could be very useful especially for sites with less than 10 years of
continuous dataset. That's why a 2! years hincast is used for
developing and testing this proposal, using real data for validation
and estimating the error. Further on, the model will also be tested
using a much comprehensive hindcast (23 years) in order to
compare it with a state-of-the-art nearshore numerical model.

The starting point of this method is in-situ data acquisition us-
ing field instrumentation, such as ondographs or wave profilers,
generating a record of direct measures.

The recorded data is then used as input for a computational
algorithm based on an artificial neural network (ANN) that de-
velops a wave energy model for the site. Independently from the
length of the hindcast of the site, the model can generate wave data
for extended periods of time, enough to characterize the wave
energy potential of the site with a reasonable error. It is this feature
where the strength of the model lies: a small, incomplete set of
wave data is enough to generate an approximation of the wave
resource behavior in the site. Certainly, the accuracy of this
approximation would depend on the length of the wave database,
and so one of the objectives of this work would be to validate the
model using real wave data and assess the resulting error.

It is noticeable that artificial neural networks (ANNs) have been
used during past years to develop wave forecasting models or to
improve incomplete wave parameters hindcasts, as shown in
Table 1:

The type of ANN most commonly found in the reviewed liter-
ature coincides with the one proposed in this work: a three-layer
feed-forward networks with a non-linear differentiable
log—sigmoid transfer function in the hidden layer and a linear
transfer function in the output layer.

Two main categories are found among the reviewed scientific
literature. The first category represents temporally univariate
models, in which current and previous wave data are used to
forecast future wave data from a few hours to a few days in
advance. The ANN model proposed in this work lies within this one.
The second category represents cause-effect models in which the
cause (wind data) has been used to forecast wave date.

The originality of this research with regards to previous litera-
ture consists in the application of ANN models to the assessment of
the wave energy of a site and also, in the use of wave measurements

obtained through field instrumentation as input for the model.
Particularly, it was used an upward-looking acoustic Doppler cur-
rent profiler. The use of direct wave measures instead of wind or
other related data is emphasized in this method, and so a review of
field instrumentation for wave measurement is presented on the
next chapter. In addition, for the first time in South America, a
hindcast of real wave data is used to assess the potential of this
renewable energy source in a site. The developed model could be
used for further assess the wave energy potential in all the network
of wave measurement stations recently deployed in Brazil (see
chapter 1.3) as well as in similar wave monitoring sites worldwide.

Moreover, we hope that this work highlights the contribution of
artificial intelligence, in the form of self-learning algorithms, to the
assessment of the waves' energy potential.

1.2. State-of-the-art of wave measurement

The measurement of the wave climate plays a vital role in the
identification and monitoring of potential sites for commercial
developments of marine renewable energy (MRE). Wave mea-
surement is also needed in the development of MRE converters,
during testing phases at model scale in a controlled environment
up to testing phases at full scale out at sea [34]. Nowadays, a broad
set of technologies are available for the measurement of ocean
wave fields under different conditions, either controlled wave tanks
or open sea conditions. They are also valid for a wide range of scales,
from the detailed assessment of the wave energy potential of a
particular site to the monitoring of extent ocean areas.

Remote sensed satellite measurement, or the use of altimeter
radars placed in satellites, is widely used for the measurement of
ocean's bathymetry and topography as well as for wave measure-
ments. Altimeter radars measure the height of the satellite above
the sea surface. When applied to wave measurement, the radar
emits radio pulses that reflect first from the wave crests and later
from the wave troughs. The time delay of the reflection pulse is
used to calculate the wave height. Although the resolution and
accuracy are poorer than in-situ measurement, they have the
advantage of covering wide areas and therefore are used primarily
for the validation of global ocean models. In addition, a fleet of
commercial ships (Voluntary Observing Ships) equipped with
different types of on-board instrumentation provide ground vali-
dation of remote sensed satellite measurement.

Satellites launched during the last decades such as Topex/
Poseidon (1992—2001), Jason1l (2001) and Jason2 (2008) were
specially designed to make extremely accurate measurements of
sea-surface height: accuracy is +0.05 m [34]. Therefore, radar
altimeter data have allowed the real-time monitoring of wave-
heights, initiating a new era of wave climate measurement.
Nowadays these data are used worldwide for navigational, scien-
tific and even recreational uses (surf). When applied to the char-
acterization of wave energy resource, radar altimeter data allow the
study of the variability of wave energy density in time and space.

Beyond height measurement, the emphasis is put nowadays on
measuring the directional spectra of ocean waves [34]. Information
about the directional behavior of wave fields complements the
energy resource assessment of a site. Together with height and
period, direction is the most important parameter to be studied in
order to characterize the energy potential of a site. Arrays of
remote-sensing instruments, such as laser altimeters or ultrasonic
transducers, return point-measurements and can be used to mea-
sure the directional properties of ocean waves propagating over
smaller areas. Stereo-photogrammetry is another technique that
can provide information about the directional characteristics of the
wave field in a small area. Currently, space-borne synthetic aper-
ture radar (SAR) is the only instrument providing directional ocean
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Table 1
Literature review of wave models using artificial neural networks.
Type of ANN (artificial neural network) model Location of the study Year Ref.
Three-layered feed-forward, trained through L-M optimization; hyperbolic NE Brazil 2017 This research
tangent sigmoid and linear transfer functions
MIKE21 SW (Spectral Waves) model coupled with an ANN of 3 layers; L-M India 2016 [14]
optimization; sigmoid and linear transfer functions
Three-layered feed-forward, trained using a multilevel neuro-wavelet Gulf of Mexico (USA) 2015 [15]
transform
Three-layered feed-forward ANN combined with wavelet fuzzy logic, fuzzy logic Pacific Coast (USA) 2010 [16]
and autoregressive moving average
Three-layered feed-forward, with conjugate gradient, L-M optimization, India 2007 [17]
resilient back propagation and quick propagation
Three-layered feed-forward, trained with standard backpropagation (Rprop India 2006 [18]
algorithm)
Three-layered feed-forward optimized with a CFC conjugate gradient algorithm Gulfs of Alaska, Mexico and Maine (USA) 2006 [19]
Different ANNs simulating wave parameters and working in parallel Portugal 2006 [20]
2005 [21]
Three-layered feed-forward, trained with supervised back propagation Tasmania (AUS) 2007 [22]
2005 [23]
NW Pacific Ocean 2006 [24]
India 2005 [25]
2001 [26]
1998 [27]
1997 [28]
Ireland 2004 [29]
Taiwan 2001 [30]
Static feed-forward multilayer neural networks coupled with the stochastic auto Turkey 2004 [31]
regressive and exogenous input auto regressive models
Three-layered feed-forward, trained with back propagation, conjugate gradient India 2002 [32]
and cascade correlation 2000 [33]

wave information on a global scale. New space-borne missions
using interferometric SAR technology for the measurement of
ocean waves and currents have already been planning for the next
years [35].

Remote measurement is essential for the monitoring of the
weather and climatic conditions of wide areas as well as for the
validation of numerical models. It can also provide primary data for
the selection of sites with significant wave energy potential. Once
focused in a particular area, in-situ measurement provides a
detailed characterization of the local wave conditions. The uncer-
tainty of the in-situ measurement can be minimized with a correct
selection of the measuring technique and the instrument posi-
tioning, as well as with the initial verification of instrument accu-
racy followed by periodical calibration and maintenance.

Capacity sensors, pressure-velocity sensors and buoys are the
most basic instrumentation available for in-situ measurement of
ocean gravity waves. Those mature techniques have been used for
decades. Pitch-and-roll buoys are widely used but they are
expensive, prone to damage and vandalism, and have mooring is-
sues in shallow coastal waters [34]. Other option is the installation
of arrays of capacitance wire gauges or bottom-mounted sensors.
Among the latter, pressure-velocity (PUV) sensors are less expen-
sive but are limited in effective working depths to less than
10—15 m due to the high degree of attenuation in the high fre-
quency portion of the wave signal of pressure and velocity [34].

The above-related methods have been complemented with a set
of new technologies, subsequently reducing the uncertainty of the
wave measures. The first type of new technologies that have come
to complement the traditional ones are radars, particularly marine
X-band radars, coastal High Frequency (HF) radars and real or
synthetic aperture radars. Nautical radars allow scanning the sea
surface with high temporal and spatial resolution. They can be
mounted on ships, buoys or coastal stations and allow taking site-
wide sea state measurements from the backscatter of microwaves
from the rough sea surface. Other new types of instruments are
Acoustic Doppler Current Profilers (ADCPs), lidars (laser-based

instruments), displacement and GPS buoys and, more recently,
stereo vision methods that have allowed the measurement of
three-dimensional wave fields.

The spatial and temporal scales required for the study of water
wave dynamics are different out at sea from those needed at model
scale (in a wave tank laboratory). For instance, resistance-type
gauges are commonly used for wave measurement in hydrody-
namics laboratories. They are reliable and robust, but if deployed at
sea large measurement errors can occur due to water currents
moving the gauge device. Other instrumentation generally used in
laboratories are capacitance wave gauges (less intrusive than
resistance-type gauges), mechanical profile followers or pressure
sensors combined with velocity sensors.

Non-intrusive instrumentation is preferable against in-situ in-
struments, as the first one does not interfere with the wave field to
be measured which is an advantage in laboratory experiments as it
reduces disturbances. The wave field can be disturbed due to
radiated waves generated at the intrusive instrumentation (probe),
which becomes more important as the scale of the waves consid-
ered decreases.

In addition, when deployed at sea, non-intrusive instrumenta-
tion suffers less exposure to sea water corrosion, bio-fouling, wave
load and damages from human activities, and therefore requires
less maintenance.

Fig. 1 summarizes these non-intrusive techniques available for
wave measurement.

This research is based on data acquired with an Acoustic
Doppler Current Profilers (ADCP) deployed on the seabed near the
shore. ADCPs are non-intrusive and have been successfully adapted
to the measurement of directional wave spectra. They measure the
water velocities over a depth range using the Doppler effect of
sound waves that are scattered back to the acoustic beams of the
instrument. ADCPs use generally at least three acoustic beams so
they are able to estimate the directional properties of the wave
field. The particular ADCP used in this research, namely Teledyne
RDI Workhorse wave array, allowed measuring the multi-
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Fig. 1. Scheme of non-intrusive techniques for wave measurement.

directional wave spectra, current velocity profiles, and water level
at the same time. This was possible by using up to a total of 12 radial
velocity measurements to quantify the near-surface orbital fluctu-
ations at up to three different depth levels as inputs for the direc-
tional spectra measurement [36].

ADCPS can be installed under the sea level or at the surface.
Some researches have compared a surface tracking ADCP (AWAC
from Nortek) and a submarine ADCP (RDI workhorse wave array),
concluding that the surface tracking is more precise but is also
susceptible to false returns from bubble clouds generated by
extreme wind-wave conditions or by boat wakes and wash [37,38].
Seim and Edwards (2006) also did a comparative study between a
buoy-mounted ADCP and a bottom-mounted, upward-looking
ADCP detecting some noise and interference problems inherent to
the buoy-mounted ADCP, which are avoided when using submarine
ADCP [39].

1.3. Brazil's wave monitoring programs

The lack of enough experimental data is a conditioning factor for
the modeling of the wave's behavior in the Brazilian coast. That
turns necessary the use of mathematical simulation models that
take as inputs other secondary climatic data, for instance the wind
speed at the sea level. The CPTEC - Brazilian Center for Weather
Forecasting and Climatic Research uses the third-generation model
for oceanic waves WAVEWATCH 2.22, which is suitable for waters
with more than 40 m' depth. This model is directed for marine
navigation, not for assessing the energy potential of waves on the
shoreline. Nevertheless, the WAVEWATCH IlII (WW3) model has
already been used to assess the wave potential in parts of the
Brazilian seashore [40]. Among the few researches using experi-
mental data are Beserra et al. (2007) [41] who used a 5-year pitch-
roll buoy data series to assess the energy resource in the North
coast of the country and Assis (2010) [42] who investigated the
Southern coast of Brazil using a 2.5-year pitch-roll buoy data series.

One of the most remarkable initiatives for establishing a wave
monitoring network around the country's shore is the PNBOIA -
Brazilian National Buoy Program. It consists in a network of drifting
buoys and fixed buoys anchored in the shoreline that are tracked by

satellite, with the aim to provide real-time weather and oceano-
graphic data. This program has propitiated both the gathering of
scientific knowledge and a contribution to weather and oceano-
graphic forecasts.

The most recent Brazilian wave monitoring network, starting in
2013, is called “Rede Ondas”. This network counts with ondographs
and wave profilers located on the seabed under shallow waters in
eight sites of the country's shoreline (see Fig. 2). This network is
coordinated by the Brazilian Navy and supervised by GOOS - The
Global Ocean Observing System, an international cooperation
platform from which Brazil is member. This network is expected to
complement the PNBOIA buoy system and to provide more detailed
information about coastal erosion and the impacts of climatic
change. For the first time data from the “Rede Ondas” system are
also used to estimate electricity generation potential. In this
research, data recorded at intervals of 3 h during 30 consecutive
months in one of the “Rede Ondas” stations were used to develop a
mathematical model of the energy potential in the site where the
station is located.

2. Methodology
2.1. Data gathering

Wave data were recorded with an Acoustic Doppler Current
Profilers (ADCP) Work Horse Sentinel that operates at a frequency
of 600 kHz and is equipped with a directional wave meter - Waves
Array from Teledyne RD Instruments. This device operates in Praia
de Forte (State of Bahia) at latitude 12° 36’ 13.8” South and longi-
tude 37° 58 31.8” West. It is deployed on the seabed under the
32 m' isobath, fixed to an anti-drag concrete structure. Fig. 3 shows
the operation of this metering device.

This instrument measures the significative wave height, the
wave peak period and the direction of the waves. In other words, it
measures the complete frequency/direction wave spectrum. Mea-
sures are taken at intervals of 3 h within a “burst sampling” mode at
a frequency of 2 Hz. Although this device allows transmitting the
measures to shore via a cable link or acoustic modem as real-time
data, in the “Rede Ondas” network data are stored internally for
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Fig. 2. The “Rede Ondas” Brazilian wave monitoring network, based on anchored ondographs and seabed-deployed wave profilers.

Fig. 3. Scheme of the Acoustic Doppler Current Profiler used for data acquisition [43].

short or long-term deployments. Divers recover the stored data
every month.

The uncertainty of the ADCP's primary sensors under the field
conditions in which it operates is excellent [43]. Regarding tilt, both
accuracy and precision are +0.5° with a resolution of 0.01°.
Regarding the fluxgate-type compass, it includes a built-in field
calibration feature that allows an accuracy of +2°° and a precision
of +0.5°> with a resolution of 0.01°. The profile parameters are
velocity (accuracy +0.3 cm s, precision +0.1 cm s~!) and echo
intensity profile. The latter has a precision of +1.5 dB which gives a
velocity resolution of 0.1 cm s~ . Using those primary measures, the
ADCP internal software calculates height, period and direction.
Then, after the burst sampling, the mean values of height and
period are calculated and stored in the internal memory as the
representative values of that 3 h' period.

It is worth noting that the ADCP records the wave peak period,
which corresponds to the wave period with the highest energy. In
order to estimate the power of wavefronts in the site, the wave peak
period must be converted to wave energy period, which is the
mean wave period with respect to the spectral distribution of en-
ergy. The conversion to wave energy period was done considering
the waves characteristics as within the JONSWAP spectrum [44],
from which the Bretschneider (one-sided) ocean wave spectrum is
the limiting form [45]. In that case, some authors suggest a wave
energy period/peak period ratio of 0.85 [46]. This study adopted a
value of 0.9 which is equivalent to assuming a standard JONSWAP
spectrum with a peak enhancement factor of 3.3 [45].
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2.2. Power estimation of wavefronts

In Physics, a wave is defined as an energy transport phenome-
non that transports energy along a medium without transporting
matter. The amount of energy carried by a wave is directly pro-
portional to the square of the amplitude of the wave. An ocean
wavefront can be defined as an advancing surface of wave propa-
gation, and follows that behavior. The amplitude corresponds to the
height of the wavefront, a parameter that is measured by the wave
profiler. The height would determine the maximum of kinetic en-
ergy that is carried within each wave. In addition, by considering
the period between consecutive wavefronts, it can be calculated the
potential power (energy per unit time) that could be generated
given a specific sea conditions (wave's period and height). A wave
energy device located under those conditions would harvest only a
percentage of that maximum theoretical potential. The water
density (p) also influences the power that can be extracted from a
wave: denser, saltier waters carry more kinetic energy than softer
waters at similar conditions.

Calisal (1983) calculated the energy density of a developed two-
dimensional wave, giving the total energy expressions for deep and
finite depth water waves [47]. In deep water waves the potential
energy density propagates with the phase velocity, while the ki-
netic energy density is stationary. For surface waves propagating at
a finite depth the kinetic energy density has a stationary and a
propagating component, and the portion of energy travelling with
the phase speed is the potential energy. The power resource from a
wavefront is determined by the water density (p), gravitational
acceleration (g) and the wave's amplitude (A) [47]:

P:%‘p-g-/\z (1)

This expression can be simplified to obtain another one that
only depends on the wave's height (H) and the period between two
consecutive wavefronts, that is, the wave energy period (T) [48]:

P& oo 1.0

P_m-H ~T~§H T (2)

The above expression, Eq. 2, calculates the power per meter of
wavefront (kW m~) for the height H in meters and the wave en-
ergy period T in seconds. Eq (2) is only valid for deep waters where
the waves do not interact with the bottom and wave characteristics
are thus independent of the water depth. To fall within this cate-
gory, data must complain with the criteria d/L > 0.5 (d = depth,
L = wave length). That is the case of this study as the ADCP was
deployed under the 32 m isobath. For wave power potential at
shallow waters, Eq. 3 is more appropriate:

P& 12

P=g52 H:T (3)

An alternative method of power calculation is described by Pitt
(2005) [49]. That method also calculates the power were the wave
system is unidirectional, regardless the wave spectral direction.
However, the significant wave heights are calculated from the
spectral wave characteristics. The wave spectra is measured over
different frequency ranges with different frequency subdivisions.
The power per meter of wavefront is calculated using Eq. 4:

i=64

P=pg-y SiValf)-bf, (4)
i=1

where Vg(f;) is the velocity at the i frequency, S; is the corre-
sponding spectral density estimate, Af; is the it frequency subdi-
vision, p is the density of seawater (1025 kg m™) and g is the

acceleration due to gravity (9.8184 m s2).

Eq. 4 is less intuitive, although may be adequate for some wave
measurement techniques, such as radar/Waverider buoys [34]. As
the database used in this research consists of records of height and
period, it was considered Eq. 2 as the most suitable expression for
the wave power estimation.

2.3. Development of the neural network model

Artificial neural networks (ANN) can be described as machine
learning models that mimic a human neural system. An artificial
neural network is a structure of information processing that ap-
proximates functions that can depend on a large number of un-
known inputs. Their ability to be used as an arbitrary function
approximation mechanism that 'learns’ from observed data is an
important advantage. That is, they can be used to infer a function
from observations.

ANN models are trained using historical data record that rep-
resents the behavior of a system. Once trained and optimized, such
model takes as inputs the data from the previous instants (the
previous values of one or more variables). The model processes the
inputs and gives, as output, the forecasted values for a selected set
of variables according to the historical behavior of the system. Be-
tween the input and the output, there may be one or more hidden
layers, each consisting of a number of processing units called
neurons that together form a self-learning algorithm.

Generally, the number of input variables would determine the
complexity of the model. These input neurons send data to
following layers of neurons, but during this process some param-
eters are stored. Those stored parameters are called the “weights”
of the interconnections and manipulate the data in the calculations.
The “activation function” converts a neuron's weighted input into
its output. The output is then compared and the weights are
adjusted (updated) through a learning process, using a “cost func-
tion”. This function is a measure of how far away a particular so-
lution is from an optimal solution. Therefore, in the validation
(comparison) period an error index must be adopted for measuring
the success of the forecasting.

The model structure may be a simple feed-forward. However,
the power output generated at any hour may present some corre-
lation with the one from the previous hour. This would be the case
of weather events, such as storms or anticyclones, lasting even
several days. During those events the waves' height and period
would be particularly high or low. The accuracy of the forecasting
model can be improved by using a more evolved structure that
considers possible correlations between the previous outputs (the
wave power from previous hours) and thus detects those eventual
climatic events, adjusting the prediction. For that reason it was
chosen a non-linear autoregressive exogenous model (NARX). Such
structure consists basically in the feedback of the ANN using out-
puts from previous moments as feed-forward inputs. This approach
is commonly used as a way to represent dynamic systems [50—53].
Thereby, the model uses values from past variables to make future
predictions, as in a dynamic system model like the one presented in
Eq. 5:

y(t) :f(y(t_ 1)’y(t_2)77y(t_n0’)’u(t_1)7u(t_2)7u(_nfu))
(5)

The final structure of the ANN is represented in Fig. 4:

Having defined the model's structure the next step is to define
the final architecture. That is, the type of the activation function of
each neuron, the number of hidden layers and the number of their
neurons and finally the selection of the best model. It was already
demonstrated that one single layer is enough for a neural model to
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Fig. 4. Structure of the chosen neural network model: non-linear autoregressive
exogenous model.

be able to approximate any function with an arbitrary precision
[54]. The activation functions must be chosen according to the
system that is under study such, for example, in the case of pattern
recognition in which step functions are commonly used. Regarding
the training stage, the most common method used is back-
propagation [55—58]. This method consists in the continuous
adjustment of the network parameters until its prediction is as
close as possible to the experimental data. After the selection of the
activation functions and the training methods, we arrive to the
crucial point of the model, which is choosing the number of neu-
rons in the hidden layer. This number will determine the quantity
of parameters to be estimated during the training stage. Too many
neurons may lead to overadjustment, that is, the unwanted
modeling of noise or spurious data. Meanwhile, a less-than-
necessary number can have a detrimental effect on the quality of
the model's prediction. In 1996, Schenker and Agarwal [59] pro-
posed the use of dynamic cross-validation for the selection of the
optimal number of neurons of the hidden layer, demonstrating the
efficiency of this methodology when applied to cases with little
available data. In the present work, the number of neurons was
used through dynamic cross-validation. The method consists in
separating the data in three groups, namely A, B and C. Groups A
and B will be used for training two different networks for each
neuron number. After the training, the network developed using
data group A is validated with data group B. The model predicts the
values of data group B and the resulting error is calculated. The
process is repeated, increasing each time the number of neurons
until reaching a maximum of 40 neurons. The number of neurons
that shows the lowest validation error will be taken as the
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Fig. 5. Dynamic cross-validation for the selection of the optimal number of neurons of
the hidden layer: validation errors for different number of neurons.

optimum. This error, calculated as the minimum mean square error,
is represented versus the number of neurons in Fig. 5. It can be
observed from the figure that the lowest validation error corre-
sponds to a hidden layer of 2 neurons.

After the selection of the number of neurons of the hidden layer,
the final step is the training and validation of the final structure.
The training consists in estimating the parameters of the neural
network: weights and bias. Those parameters are estimated
through a problem of optimization. To solve that problem, it was
used the Levenberg-Marquardt backpropagation algorithm. In or-
der to avoid the overadjustment of the data by the model, the early
stopping technique was used. The overadjustment problem arises
when the network is overloaded with information about the
training group and has its capacity degraded [59—61]. The early
stopping technique consists in stopping the training after a suc-
cessive number of iterations, when it is noticed that the validation
error increases. The training of the final network was done with
data groups A and B, while the validation was done with data group
C. Approximately 10% of the data were used to predict the
remaining 90%. The general definitions of the final model are
shown in Table 2.

2.4. Measuring the model prediction error

The accuracy of the load prediction of a neural network or any
other mathematical model is usually defined using two terms: the
Mean Absolute Percentage Error (MAPE) and the coefficient of
variation (CV).

The MAPE, also known as mean absolute percentage deviation,
is usually expressed as a percentage and is widely used for
measuring the accuracy of a forecasting method or trend estimate.
It is very intuitive as refers to the innate concept of the error as the
difference between the real and the forecasted values. It is defined
by the formula:

1< .
MAPE:E» > -100 (%) (6)

Py — F;
=P

t

where P is the actual value (the measured power in the instant t)
and F; is the forecast value for that instant. The difference between
P and F; is divided by the actual value P; again and the absolute
value of the resulting division is summed for every forecasted point
and divided by the number of fitted points n.

In this research the ANN model is used to forecast the potential
power that could be harvested from the waves during 10 consec-
utive months (at a rate of one prediction each 3 h). In order to
assess the precision of the model, the error of each predicted value
is calculated by particularizing the MAPE expression for each one of
the forecasted points:

Table 2
Characteristics of the proposed ANN model.

ANN model parameters

Total number of neurons evaluated 40
Total number of trainees done 15
Optimal number of neurons 2
Total iteration in training step 1000
Performance (mse) 7.02
Minimum gradient 1077
Early stopping criteria 30

Transfer function in the first layer
Transfer function in the output layer

Hyperbolic tangent sigmoid
Linear function
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Both the predicted and the measured values during the 10
months' timeframe are displayed together in the following chapter,
as a “validation” of the model. This error corresponds to the accu-
racy of the model, or the proximity of predicted results to the true
value.

The errors of all the forecasted points are also classified within a
histogram in order to assess their frequency distribution. We chose
to do this as gives an insight of how distributed the errors are,
complementing very well the information provided by the MAPE.
This option is more graphic and didactic than the calculation of the
coefficient of variation (CV). That coefficient, also known as relative
standard deviation, is a standardized measure of dispersion of a
probability (frequency) distribution, defined as the ratio of the
standard deviation to the mean or to the absolute value of the
mean:

0’ o)
Cvfﬁ-lOO(A) (8)

where ¢ is the standard deviation and p is the mean. While the
MARPE is related to the accuracy of the model, an assessment of the
error distribution either graphically or through the use of the CV, is
related to the concept of the precision of the model expressed as
the closeness of agreement among its set of results.

3. Results and discussion
3.1. Model output, performance and error distribution

It was used a database consisting of 6312 measures of height and
period, which originated the corresponding power values. The
experimental data correspond to a recorded power between 1 and
65 kW mL. The total incoming energy during the 30 months was
179 MWh per meter of wavefront.

A fraction of the data set was applied in the developing of the
model. Specifically, 3156 values were used to train the neural
network. Later, the model was used to predict the power in all the
points (validation of the model). The result of that validation is
shown in Fig. 6:

The error distribution, shown in Fig. 7, revealed a slight trend of
the model to overestimate the power. The mean value of all the
errors was +7.2%.

The resulting set of errors showed a distribution with a small
standard deviation. The standard deviation indicates how close the
data points tend to be to the mean of the set of errors. For the set of
errors produced by this model, the standard deviation (sigma) is
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Fig. 6. Validation of the model: experimental data (green points) VS ANN model (blue
line). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 7. Distribution of the errors made by the model.

29.60%. However, the model made some gross errors of up to —70%
and +260% at some points.

Together with the histogram of errors, Fig. 7 depicts the normal
(or Gaussian) distribution of errors. This function is symmetric
around the point +7.2 (mean value of the error). Within a normal
distribution, the 3-sigma rule establishes that 68% of values are
within one standard deviation away from the mean; about 95% of
the values lie within two standard deviations; and about 99.7% are
within three standard deviations.

Therefore it can be stated that by using the proposed ANN
model, 68% of the forecasted values have an error of
between —22.4% and +36.8% (MAPE < 29.8%); 95% of the forecasted
values have an error of between -52.0% and +66.4%
(MAPE < 59.2%); and about 99.7% of the forecasted values have an
error of between —81.6% and +96.0% (MAPE < 88.8%).

The validation of the proposed ANN model using a 2! years'
dataset showed an average error in the estimate of 7.2%, which is
above the error of properly set up models that use extent hindcasts
[62-65]. That error together with the high deviation suggests that,
in the cases of incomplete or short hindcasts, the model may be
more suitable to fill the gaps of missing intervals than to perform a
resource assessment.

Following, the ANN model will be tested using a much
comprehensive hindcast (23 years). Wave height from the site of
that hindcast will be modeled using the proposed ANN model and a
state-of-the-art nearshore model. Both models will be validated in
that site with the aim to compare their performances.

3.2. Comparison of performances of the developed ANN model vs
the Nearshore Wave Prediction System

Statistical comparisons between ocean wave models have been
carried out frequently, for example SWAN vs. Wavewatch III [66]. In
this section it is presented a direct comparison of results using the
ANN model and the Nearshore Wave Prediction System (NWPS),
which is a combination of several models: (SWAN, Wavewatch III
and other simulators). The parameter that is compared is the sig-
nificant wave height. That parameter is measured and registered
every hour in a buoy station located in the West Coast of USA. There
is a 23 years' significant wave height dataset from that buoy. The
ANN model can be applied to that site by using that dataset as in-
puts, and then validated. In addition, the NWPS model is applied
and validated in that site by the National Oceanic and Atmospheric
Administration (NOAA), which turns possible a direct comparison
between the performances of both models.

3.2.1. Origin of the data used for the comparison

NOAA is recognized worldwide for producing highly reliable
ocean data and for making that data available online for the sci-
entific community. It has several buoys deployed on the coasts of
the USA that gather and transmit data. Among them, a buoy
identified as Station 41004 was chosen for three main reasons. First,
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it has a very similar water depth (38.4 m) than the other station
located in the Brazilian coast. Secondly, it has an extent hindcast of
wave height and period data with a frequency of 1 measurement
per hour during 1994—2017. That allows developing and training an
ANN model using a 23 years hindcast, which in thesis should
produce a more accurate model than the one previously applied to
the Brazilian coast (which only used data from the last 2! years).
Thirdly, the output of the NWPS model is validated using data from
each buoy of the system, and the results of the validation for buoy
41004 were available for June 2017. This allows the comparison, for
that site, of the NWPS model's performance against the ANN model.
Fig. 8 shows buoy 41004 and its location in the West Coast of the
USA.

Station 41004 is located 41 NM Southeast of Charleston, SC at
32°30'2” N 79°5’58” W. This 3-m foam buoy is owned and main-
tained by the National Data Buoy Center (NDBC). Besides counting
with an extensive hindcast, this station also highlights for its so-
phisticated technology. It uses the state-of-the-art of NDBC's ocean
observing system for buoys, named the Self-Contained Ocean
Observing Payload (SCOOP) [67]. Wave observation is performed
through the Digital Directional Wave Module (DDWM). This mod-
ule consists of a nine axis motion sensor and processor. The nine
axis motion sensor consists in a combination of a 3-axis gyroscope,
a 3-axis accelerometer and a 3-axis magnetometer. Resolution of
the sensors are 0.1 m (for wave height) and 1.0s (for wave period),
which gives a system accuracy of +0.2 m (for wave height) and
+1.0s (for wave period) [68]. The error for the estimate of the sig-
nificant wave height is RMS<0.10 m with a Mean Diff<0.01 m. The
error for the average period is RMS<0.14s [67].

3.2.2. The ANN model particularized for this comparison

A neural network model similar as the one explained in the
Methodology chapter (non-linear autoregressive exogenous model
trained using backpropagation) was particularized for the hindcast
of the buoy 41004. The ANN model parameters were recalculated.
For this particular hindcast, the optimal number of neurons is 10.
Performance (mse) is 0.0456 and MAPE is 5.27%; Regarding the
error distribution, the mean value of the error is 0.86 and the
standard deviation (sigma) is 7.87.

3.2.3. The NWPS model

NWPS is driven by forecaster-developed wind grids produced in
AWIPS — Advanced Weather Interactive Processing System, which
integrates meteorological, hydrological, satellite and radar data. It is
also driven by wave boundary conditions from the operational

North
Pacific

Wavewatch III model. The nearshore wave model used is SWAN, a
third-generation wave model developed at Delft University of
Technology that uses as inputs wind, bottom and current condi-
tions. Wave-current interaction is included using surface currents
from the Real-Time Ocean Forecast System (RTOFS-Global). Tides
and storm surge are accounted for using the Extratropical Surge
and Tide Operational Forecast System (ESTOFS, extratropical con-
ditions), or the probabilistic model P-SURGE (tropical conditions).
NWPS uses computational grids that have a nearshore resolution of
1.8 km—500 m and produces fields of integral wave parameters,
wave spectra, and individually tracked wave systems (Gerling-
Hanson plots). Experimental rip current and total water level
guidance is produced at 5 pilot WFOs [69-74].

3.2.4. Validation of both models using data from NDBC's station
41004

For each day of June 2017, both models generated a predicted
wave height at the site for the following 24, 48, 72 and 96 h. Then
the predicted values were validated with the observed (measured)
values in the buoy's sensors. Results of the validation, for each one
of the four forecasts (24 h, 48 h, 72 h and 96 h) are presented in a
scatter plot with two axis: the height output of the model (Hs,mod)
and the one observed in the buoy (Hs,obs). Each plot has 30 vali-
dation points, representing the days of June 2017. Scatter plots that
compare observed VS modeled wave heights are widely used. For
instance, such plots are available for the global Wavewatch III
model for deep waters, which is validated using the observations
from the Jason 2 satellite [75]. NOAA also uses scatter plots to
validate the NWPS model and kindly provided the necessary data
for this validation [76]. Figs. 9 and 10 show the validation of both
models’ forecasts at Station 41004.

The validation of the NPWS is expressed using two statistical
parameters: the relative bias and the scatter index (SI) [76]. The bias
refers to the mean error, or the difference between the estimated
value (the output of the model) and the value observed in the
buoy's sensors. The relative bias is the bias divided by the value
observed in the buoy. The scatter index refers to the RMSE (root-
mean square error) normalized by the mean value of the mea-
surements. Therefore both parameters were calculated for each
validation, and compared in Table 3.

As can be seen on Table 3, the ANN model presented a smaller
relative bias in the estimates of all the four forecasts. The ANN
model performed better in terms of relative bias. Meanwhile, pre-
dictions using NWPS showed less deviation. The ANN model had a
significantly higher scatter index, particularly in long-range

North
Atlantic

Location
of buoy
41004

Fig. 8. Buoy 41004 and NOAA's system of data buoys.
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Fig. 9. Validation of ANN and NWPS models with data from Buoy 41004: Modeled VS Observed wave height, for 24 h and 48 h forecasts.
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Fig. 10. Validation of ANN and NWPS models with data from Buoy 41004: Modeled VS Observed wave height, for 72 h and 96 h forecasts.

Table 3
Comparison between the performance of ANN and NWPS models for Buoy 41004 hindcast.
Relative bias and scatter index for each forecast ANN model NWPS
24 h Rel. bias 0.0067 0.1560
S.IL 0.4254 0.3320
48 h Rel. bias 0.0130 0.0970
S.IL 0.5154 0.4050
72 h Rel. bias 0.0158 0.1700
S.IL 0.6200 0.2670
96 h Rel. bias 0.0204 0.1690
S.IL 0.7400 0.2460

forecasts of 72 and 96 h in advance.

Moreover, the ANN model performed much better when using a
much comprehensive hindcast. The error of the model, measured
by the MAPE and the standard deviation, reduces when considering
a more extent hindcast. The error of the model was too high for a
2, years' dataset, which suggests a better use for filling the missing
gaps than for resource assessment. Where there is enough data

available (long-term datasets as recommended by international
protocols) the ANN model could also have a use for resource
assessment. By using a 23 years' hindcast, the ANN model was able
to estimate the waves' height at Station 41004 with a MAPE of
5.27%. Table 4 shows a comparison between the performances of
the proposed ANN model for the two hindcasts that were
considered.
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Performance of the proposed ANN model with regards of the hindcast's extension.
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Bahia, Brazilian Coast SC, West Coast of USA

Extension of the hindcast

Instrumentation used for wave data acquisition
Type of forecasting model

Nov 2014 - May 2017
(2 years) (23% years)

acoustic doppler current profiler nine axis motion sensor
ANN (non-linear autoregressive exogenous model trained using backpropagation)

Jan 1994 - June 2017

MAPE 7.20% 5.27%
MSE 7.0200 0.0456
Mean value of the error distribution (p) 7.20 0.86
Standard deviation of the error distribution (o) 29.60 7.87
Coefficient of Variation (CV) 411% 915%

4. Conclusions

Wave monitoring systems have greatly evolved in recent years.
Nautical radars, ADCPs, lidars, displacement and GPS buoys and
stereo vision instrumentation are now available to produce high
resolution data. Those data, in particular measures of wave height
and period, are of interest for the assessment of the wave energy
potential of coastal sites.

This research proposes a mathematical model, based on artifi-
cial neural networks, that uses direct wave measures to charac-
terize that potential. The model selects some data from a hindcast
and uses those values to train a neural network that estimates wave
height and period, and therefore the wave power available in that
particular coastal site. The model was implemented and validated
in two different sites. The first one had a dataset from an acoustic
Doppler wave profiler deployed at 32 m depth, measuring during
2 years at intervals of 3 h. The second consisted in data from a
buoy that deployed a 9-axis motion sensor and other instruments,
and measured continuously during 23 years at intervals of 1 h.

In the first case (2 years' hindcast) it was able to estimate the
energy potential of the site with a mean error of 7.2%. By using a 23
years' hindcast, the mean error of the model decreased to 5.27%
with much less deviation. The performance (precision and accu-
racy) of the ANN that is proposed in this research increases with the
use of hindcasts covering longer periods. Moreover, when
compared with the nearshore numerical model NPWS, the neural
network trained with the 23 years' dataset performed quite well
(better in terms of relative bias and worse in terms of scatter index).
For datasets covering short periods of time, as in the first case, the
error of the model is too high which suggests a better use for filling
the missing gaps than for resource assessment. That is, given an
incomplete set of measures from a coastal site, the remaining
behavior of the waves in the missing gaps can be easily inferred
with the use of this proposed model at an acceptable error. In sum,
ANNs and other artificial intelligence algorithms are powerful
computational tools that can make an optimal use of the data
produced by wave monitoring instrumentation.
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